Recurrent neural networks for language understanding
نویسندگان
چکیده
Recurrent Neural Network Language Models (RNN-LMs) have recently shown exceptional performance across a variety of applications. In this paper, we modify the architecture to perform Language Understanding, and advance the state-of-the-art for the widely used ATIS dataset. The core of our approach is to take words as input as in a standard RNN-LM, and then to predict slot labels rather than words on the output side. We present several variations that differ in the amount of word context that is used on the input side, and in the use of non-lexical features. Remarkably, our simplest model produces state-of-the-art results, and we advance state-of-the-art through the use of bagof-words, word embedding, named-entity, syntactic, and wordclass features. Analysis indicates that the superior performance is attributable to the task-specific word representations learned by the RNN.
منابع مشابه
Interactive Language Understanding with Multiple Timescale Recurrent Neural Networks
Natural language processing in the human brain is complex and dynamic. Models for understanding, how the brain’s architecture acquires language, need to take into account the temporal dynamics of verbal utterances as well as of action and visual embodied perception. We propose an architecture based on three Multiple Timescale Recurrent Neural Networks (MTRNNs) interlinked in a cell assembly tha...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملA Step Beyond Local Observations with a Dialog Aware Bidirectional GRU Network for Spoken Language Understanding
Architectures of Recurrent Neural Networks (RNN) recently become a very popular choice for Spoken Language Understanding (SLU) problems; however, they represent a big family of different architectures that can furthermore be combined to form more complex neural networks. In this work, we compare different recurrent networks, such as simple Recurrent Neural Networks (RNN), Long Short-Term Memory...
متن کاملInvestigation of recurrent-neural-network architectures and learning methods for spoken language understanding
One of the key problems in spoken language understanding (SLU) is the task of slot filling. In light of the recent success of applying deep neural network technologies in domain detection and intent identification, we carried out an in-depth investigation on the use of recurrent neural networks for the more difficult task of slot filling involving sequence discrimination. In this work, we imple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013